Supplementary information

Hydrolysis of Cellulose by a Mesoporous Carbon-Fe $_2(SO_4)_3/\gamma$ -Fe $_2O_3$ Nanoparticle-Based Solid Acid Catalyst

Daizo Yamaguchi^{1*}, Koki Watanabe¹, Shinya Fukumi¹

¹Department of Mechanical Engineering, National Institute of Technology, Tsuyama College, 624-1 Numa, Tsuyama-City, Okayama 708-8509, Japan

*Correspondence and requests for materials should be addressed to D.Y.

(tnt_yama@tsuyama-ct.ac.jp)

Table of Contents

Table S1. BET surface areas, total pore volumes and average pore sizes	S3
Figure S1. Pore size distribution of the sample	S3
Table S2. Sample compositions	S4
Figure S2. Zero field cooled and field cooled magnetization for MCNC-SA	S4
Figure S3. Iron oxide nanoparticle sizes	S5
Figure S4. XRD and Raman spectra	S5
Table S3. Mössbauer effect parameters	S6
Figure S5. Internal magnetic field distribution	S6
Figure S6. Surface functional groups	S7
Table S4. Magnetic remanence, saturation magnetizations and coercivity	S8
Figure S7. Repeated hydrolysis of cellobiose	S8

Legend

MCNC: mesoporous carbon- $\gamma\text{-}\text{Fe}_2\text{O}_3$ nanoparticle composite

MCNC-SA: MCNC-based solid acid catalyst

Samples (with iron nitrate concentration)	BET specific surface area (m ² g ⁻¹)	Total pore volume (cm ³ g ⁻¹)	Average pore size (nm)
1.25 g L ⁻¹	17.4	0.060	13.90
2.50 g L ⁻¹	39.1	0.103	10.51
5.00 g L ⁻¹	65.6	0.106	6.44
10.0 g L ⁻¹	114.4	0.177	6.20
15.0 g L ⁻¹	129.1	0.218	6.76

Table S1 | Brauner-Emmett-Teller (BET) surface areas, total pore volumes, and average pore sizes of MCNC-SA samples synthesized using different iron nitrate concentrations.

Figure S1 | Pore size distributions of MCNC-SA (concentration of iron(III) nitrate enneahydrate solution: 5.0 g L^{-1}). (a) Nitrogen adsorption-desorption isotherms. (b) Pore size distribution obtained from desorption isotherms as calculated by the BJH (Barret-Joyner-Halenda) method.

Table S2 | Compositions of MCNC-SA.

Sample ^a						
(with iron nitrate	C (1s)	N (1s)	0 (1s)	Na (1s)	S (2p)	Fe (2p _{3/2})
concentration)						
5.0 g L ⁻¹	71.7	1.3	23.5	0.2	2.4	0.9

a) Elemental compositions by XPS analysis, in atomic percent.

Samples ^b	6	11	N	C	Га ^С
(with iron nitrate concentration)	L	п	IN	5	re
1.25 g L ⁻¹	60.22	2.40	1.03	5.18	1.40
2.50 g L ⁻¹	58.53	2.44	0.89	4.83	_
5.00 g L ⁻¹	54.18	1.85	0.66	4.64	6.21
10.0 g L ⁻¹	52.09	1.86	0.69	4.41	_
15.0 g L ⁻¹	55.06	2.34	0.84	4.69	6.33

b) Compositions determined by elemental analyzer, in weight percent.

c) Calculated from ash (Fe_2O_3) weight percent.

Figure S2 | Zero field cooled (ZFC) and field cooled (FC) magnetization for MCNC-SA (concentration of iron(III) nitrate enneahydrate solution: 5.0 g L^{-1}).

Figure S3 | Iron oxide nanoparticle sizes in the MCNC-SA carbon matrix. TEM images of MCNC-SA, prepared from iron(III) nitrate enneahydrate solutions with concentrations of (a) 1.25 g L⁻¹, (b) 5.00 g L⁻¹ and (c) 15.0 g L⁻¹.

Figure S4 | Structures of MCNC-SA. (a) The XRD pattern of the samples. The diffraction peaks can be assigned to γ -Fe₂O₃ (JCPDS card No. 39-1346) or Fe₃O₄ (JCPDS card No. 19-0629). (b) Raman spectrum of the sample (concentration of iron(III) nitrate enneahydrate solution: 5.0 g L⁻¹).

Component	δ ^{a)}	Δ ^{a)}	H ^{a)}	%Fe
[1]	+0.26	0.34	0	62
[2]	+0.38	0.64	0	38
[1]	+0.46	+0.03	506	18
[2]	+0.57	-0.11	434	45
[3]	+0.53	0.61	0	37
	Component [1] [2] [1] [2] [3]	Component δ a) [1] +0.26 [2] +0.38 [1] +0.46 [2] +0.57 [3] +0.53	Component δ^{a} Δ^{a} [1]+0.260.34[2]+0.380.64[1]+0.46+0.03[2]+0.57-0.11[3]+0.530.61	Component δ^{a} Δ^{a} H^{a} [1]+0.260.340[2]+0.380.640[1]+0.46+0.03506[2]+0.57-0.11434[3]+0.530.610

Table S3 | Mössbauer effect parameters of MCNC-SA (concentration of iron(III) nitrate enneahydrate solution: 5.0 g L^{-1}).

a) δ : isomer shift (mm s⁻¹), Δ : quadrupole shift (mm s⁻¹), H: magnetic field (kOe).

Figure S5 | The magnetic field distribution analysis for MCNC-SA at 78 K, assuming that the paramagnetic component gives a quadrupole shift doublet (concentration of iron(III) nitrate enneahydrate solution: 5.0 g L^{-1}).

Figure S6 | Surface functional groups of MCNC-SA (concentration of iron(III) nitrate enneahydrate solution: 5.0 g L^{-1}). (a) S 2p peak in the XPS spectrum. (b) ¹³C-DD/MAS NMR spectrum (* denotes spinning side bands). (c) FTIR spectrum.

Samples (with iron nitrate concentration)	<i>M</i> r (emu g⁻¹)	<i>M</i> s (emu g⁻¹)	H _c (Oe)	M _r / M _s
1.25 g L ⁻¹	0.05	0.51	42	0.089
2.50 g L⁻¹	0.05	1.61	25	0.028
5.00 g L ⁻¹	0.17	5.70	28	0.030
10.0 g L ⁻¹	0.20	8.38	23	0.024
15.0 g L ⁻¹	0.03	5.58	9	0.006

Table S4 | Magnetic remanence (M_r), saturation magnetization (M_s), and coercivity (H_c) of MCNC-SA samples synthesized using different iron nitrate concentrations.

Figure S7 | Repeated hydrolysis of cellobiose using MCNC-SA (concentration of iron(III) nitrate enneahydrate solution: 1.25 g L⁻¹). (a) Reaction conditions: MCNC-SA, 0.10 g; cellobiose, 0.12 g; water, 0.7 g; reaction temperature, 90 °C; reaction time, 3 h. (b) Fe $2p_{3/2}$ and (c) C 2p XPS spectra of the catalyst after one use.