Supplementary information

A Magnetic Carbon Sorbent for Radioactive Material of Fukushima Nuclear Accident

Daizo Yamaguchi¹, Kazumi Furukawa², Masaya Takasuga², Koki Watanabe¹

¹Department of Mechanical Engineering, Tsuyama National College of Technology, Institute of National Colleges of Technology, 624-1 Numa, Tsuyama-City, Okayama 708-8509, Japan. ²Motoyama Gokin Seisakusyo Co., Ltd., 1645-20 Ayabe aza Midoriyama, Tsuyama-City, Okayama 708-1104, Japan.

> Correspondence and requests for materials should be addressed to D.Y. (tnt_yama@tsuyama-ct.ac.jp)

Table of Contents

Figure S1. Yield of MCNC	S3
Table S1. Mössbauer effect parameters	S 3
Figure S2. Internal magnetic field distributions	S4
Figure S3. C 1s XPS spectra	S4
Table S2. Magnetic remanence, saturation magnetizations and coercivity	S5
Figure S4. Zero field cooled and field cooled magnetization for MCNC	S5
Table S3. BET surface areas, total pore volumes and average pore sizes	S6
Figure S5. Pore size distribution	S6
Figure S6. NH_3 -TPD spectra of MCNC	S7
Table S4. Total desorptions and peak temperatures	S7
Table S5. Sample compositions	S8
Figure S7. Kinetics of the removal of Cs	S8
Figure S8. Iodine and methylene blue adsorption performance	S9
Figure S9. XPS spectra	S10
Figure S10. SEM images in the verification test	S11

Legend:

MCNC: mesoporous carbon- γ -Fe₂O₃ nanoparticle composite

Cs: cesium

Figure S1 | Concentration dependence on the yield of precursor (square) and the final yield (diamond) of MCNC.

Table S1 | Mössbauer effect parameters of MCNC (concentration of iron(III) nitrate enneahydrate solution: 5.0 g L^{-1}).

Temperature	Component	δ ^{a)}	Δ ^{a)}	H ^{a)}	%Fe
202 //	[1]	+0.44	-0.16	465	41
293 K	[2]	+0.36	0.02	0	59
	[1]	+0.46	-0.04	507	52
78 K	[2]	+0.47	+0.04	451	36
	[3]	+0.40	0.07	0	12

a) δ : isomer shift (mm s⁻¹), Δ : quadrupole shift (mm s⁻¹), H: magnetic field (kOe).

Figure S2 | The magnetic field distribution analysis for MCNC at 78 K, assuming that the tails of the peaks were entirely attributable to magnetic field distribution (concentration of iron(III) nitrate enneahydrate solution: 5.0 g L^{-1}).

Figure S3 | XPS spectra of C 1s.

Samples (with iron nitrate concentration)	<i>M</i> _r (emu g⁻¹)	<i>M</i> s (emu g⁻¹)	H _c (Oe)	M _r / M _s
1.25 g L⁻¹	0.80	5.56	57	0.143
2.50 g L ⁻¹	0.90	10.48	53	0.086
5.00 g L ⁻¹	1.29	11.89	111	0.109
10.0 g L ⁻¹	2.30	28.33	73	0.081
15.0 g L ⁻¹	3.56	37.51	74	0.095

Table S2 | Magnetic remanence (M_r), saturation magnetization (M_s), and coercivity (H_c) of MCNC samples synthesized using different iron nitrate concentrations.

Figure S4 | Zero field cooled (ZFC) and field cooled (FC) magnetization for MCNC (concentration of iron(III) nitrate enneahydrate solution: 5.0 g L^{-1}).

Samples (with iron nitrate concentration)	BET specific surface area (m ² g ⁻¹)	Total pore volume (cm ³ g ⁻¹)	Average pore size (nm)
1.25 g L ⁻¹	36.4	0.108	11.80
2.50 g L ⁻¹	68.3	0.100	5.83
5.00 g L ⁻¹	100.6	0.125	4.98
10.0 g L ⁻¹	152.1	0.159	4.19
15.0 g L ⁻¹	143.7	0.157	4.36

Table S3 | Brauner-Emmett-Teller (BET) surface areas, total pore volumes and average pore sizes of MCNC samples synthesized using different iron nitrate concentrations.

Figure S5 | Pore size distribution of MCNC (concentration of iron(III) nitrate enneahydrate solution: 5.0 g L^{-1}). (a) Nitrogen adsorption-desorption isotherms. (b) Pore size distribution obtained from desorption isotherms as calculated by the BJH (Barret-Joyner-Halenda) method.

Figure S6 | NH₃-TPD spectra of MCNC.

Table S4 | Total desorptions and peak temperatures of MCNC based on NH_3 -TPD measurements.

Samples (with iron nitrate concentration)	Desorption $(\mu mol g^{-1})$	Peak temperature (°C)
1.25 g L ⁻¹	19.5	196
2.50 g L ⁻¹	31.5	190
5.00 g L ⁻¹	45.5	194
10.0 g L ⁻¹	82.8	189
15.0 g L ⁻¹	72.0	185

Table S5 | Compositions of MCNC.

Sample ^a					
(with iron nitrate concentration)	C (1s)	N (1s)	O (1s)	Na (1s)	Fe (2p _{3/2})
5.0 g L ⁻¹	63.5	1.1	22.1	11.7	1.7

a) Elemental compositions by XPS analysis, in atomic percent.

Sample ^b			
(with iron nitrate concentration)	С	Н	Ν
1.25 g L ⁻¹	69.41	2.75	0.88
2.50 g L ⁻¹	63.08	2.45	0.87
5.00 g L ⁻¹	58.24	1.65	1.00
10.0 g L ⁻¹	39.94	1.52	0.64
15.0 g L⁻¹	28.52	1.10	0.54

b) Compositions determined by elemental analyzer, in weight percent.

Figure S7 | Kinetics of the removal of Cs. Carbon, 1 g; agitating speed, 150 rpm; CsCl solution, 10mL (0.0075 mM); particle size, under 150 μm.

Figure S8 | Iodine (a) and methylene blue (b and c) adsorption performance of MCNC. Particle size is (a) under 150 μ m, (b) 100-150 μ m and (c) under 100 μ m. (b) and (c) : red indicates extrapolation for unmeasurable levels.

Figure S9 | XPS spectra. (a) Cs 3d, (b) Sr 3d, (c) I 3d, (d) Cl 2p and S 2p.

Figure S10 | SEM images of sorbent and soil. (a) Soil, (b) result of EDX analysis, (c) sorbent, and (d) magnetically separated sorbent bonded to clay particles.